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Abstract-When a fluid is forced to flow over a vertical, flat plate, generating uniform heat flux, heat is 
transferred by forced convection. The temperature difference between the surface and the fluid creates 
changes in the fluid density, causing natural convection. Therefore forced convection is always coupled 
with natural convection. In the case of loss of cooling accident (LOCA) in a nuclear reactor, the heat 
transferred by forced convection can be of the same order of magnitude as that of natural convection, 
forming a mixed-convection heat transfer mode. When the fluid is forced to flow in the upward direction, 
we have an assisting mixed convection (AMC), and when the fluid is forced in the opposite direction to 
the buoyant motion, the condition is opposing mixed convection (OMC). A simple analysis is presented, 
which evaluates the heat transfer coefficient in AMC and in OMC. The analysis assumes that the hydro- 
dynamic and the thermal boundary layers are the same. It assumes, further, that the velocity profile within 
the boundary layer is a superposition of pure forced and pure natural convection. A characteristic 
parameter, /I = 3.5u,/r,, is defined which indicates the relative influence of each pure convection mode 
in the mixed convection phenomena. For AMC a correlation is proposed as follows : 

For OMC, the solution is obtained by dividing the analysis into two regions : the first, a region dominated 
by forced convection, and the second, a region dominated by natural convection. 

1. INTRODUCTION 

IN MANY of the so-called forced-convection problems 
encountered in engineering fields, the effect of natural 
convection is insignificant and can be ignored. 

For the cases where the two modes of convection 
are of the same order of magnitude the coupling effect 
is important and a mixed convection regime is defined. 
A practical instance of this occurs in loss of cooling 
accident (LOCA) events of nuclear reactors where 
emergency conditions result in a low forced flow 
superimposed on the natural convection in the reactor 
core. This is a complex problem, because of the large 
number of interacting parameters, including the rela- 
tive direction of the forced and natural convections, 
the geometry of the arrangement, the flow condition 
and the boundary conditions. When the fluid is forced 
in the same direction as the buoyant motion, the 
regime is an assisting mixed convection (AMC), and 
when the forced flow is in the opposite direction we 
have an opposing mixed convection (OMC). 

A schematic description of the phenomena is pre- 
sented in Fig. 1. 

For the case of AMC, the early work by McAdams 
[I] recommended the effect of AMC be ignored and 
either forced or natural convection used instead, 
whichever is the higher. The combined effect was pre- 
sented by Churchill et al. [2], suggesting the use of the 

mathematical form : 

Y= [l+z”l”” (1) 
which presents a general expression for a combined 
effect of two independent continuous phenomena. For 
the case of AMC, Churchill [3] suggested the use of a 
correlation based on equation (1) as follows : 

where n is an exponent, to be selected either from 
theoretical analysis or according to experimental data. 
The values of Nu, and Nu, are based on correlations 
for pure convection effect [3]. 

The analytical-numerical solution by Wilks [4], 

when put in the form of equation (2), suggests n = 3. 
An earlier work by Acrivos [5] and a full numerical 
solution by Oosthuizen et al. [6] correlated to equation 

(2) with n = 4. On the other hand, Brdlik et al. [7] 
solved analytically only the energy equation in the 
boundary-layer mixed convection and found n = 2. 

Other previous solutions [8-111 based on infinite 
series or complete numerical profiles of the heat trans- 
fer coefficient are usually presented in graphs or tables 
and are difficult to use from a design point of view. 

For the cases of OMC, Acrivos [12] in a semi- 
analytical solution, integrated the conservation equa- 

1139 



1140 I. SHAI and Y. BARNEA 

NOMENCLATURE 

B coefficient of volumetric expansion Z independent function, equation (1). 
C,,C2,C3 constant of integration (1 l), 

(24) and (30) respectively 
Greek symbols 

CP specific heat capacity 
thermal diffusivity 

F parametric function 
; di mensionless characteristic parameter, 

gravitational acceleration 
equation (9) 

9 r 
Gr Grashof number for UWT, 

normalized velocity caused by natural 

gB ATx3/v2 
convection 

Gr* Grashof number for UHF, gBqx4/(Kv2) 
6 boundary-layer thickness 

K thermal conductivity 
V kinematic viscosity. 

L length 
n exponent, equation (1) 
NU Nusselt number 
Pr Prandtl number 

4 heat flux 
Ra* Rayleigh number for UHF, Gr* Pr 

Re Reynolds number 
T temperature 
u velocity 

X,Y coordinates 
Y dependent function, equation (1) 

Subscripts 
0 wall 
cr critical 
F forced convection 
L characteristic length 
m mixed convection 
N natural convection 
x length dependent 

f” 
potential flow 
film temperature properties. 

t thermal 

tions in the boundary layer, using the Karman- 
Pohlausen method. His results were presented in the 

will be discussed later), the following relation was 
suggested : Gr,/RejPr’i3 = 1.2 

form of Nu/Re ’ 5 = F(S, 6,) and the function was cal- 
culated numerically. In a later work by the same 

In a more recent work, Brdlik et al. [7] presented 

author [5], the previous solution was compared with 
an analytical solution for the case of uniform wall 

a complete numerical solution and found to be in 
temperature. The analysis given in their work, 

disagreement when Pr > 1. As a result of that, two 
assumed a velocity profile within the boundary layer 

correlations were proposed : 
which is a superposition of natural and forced con- 
vection. They came up with one equation for AMC 

(a) For Pr --t 0 the following relation was suggested : and OMC, by only changing the sign of Grashof num- 
‘Nui = Nug - Nu& assuming no negative values. ber. 

(b) For Pr + 00 and above a critical point (which The present work evaluates analytically the heat 

u, 

t 
x cr I i 9 

x 

t Y 

(a) (b) 

I 
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x I cr 

=z 4 =I 
X 
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FIG. 1. Mixed convection, different modes : (a) AMC; (b) OMC forced convection dominated ; (c) OMC 
natural convection dominated. 
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transfer coefficients in mixed convection on a vertical, 
flat plate with uniform heat flux and in laminar flow 
conditions. The analysis is based on adopting the con- 
cept of superposition of the velocities, and solving the 
conservation equations. For the case of AMC two 
approaches were used, whereas for OMC it was 
assumed that two separate regions exist on the plate, 
the first where forced convection is dominant and the 
second where natural convection is dominant. 

2. THEORETICAL SOLUTION 

2.1. Preliminary assumptions 
To simplify the analysis the following was assumed : 

::; 

(4 

(4 

(4 

Incompressible, steady, laminar flow. 
No pressure gradients perpendicular to the direc- 
tion of flow (x-direction). 
Negligible heat conduction in the direction of the 
external field. 
Constant potential flow, U,(x) = U,, in the 
external field. 
Constant fluid properties, except for the density 
change with temperature, in the body force term 
(Boussinesq approximation). 

In addition to the above standard assumptions, spe- 
cial assumptions were added as follows : 

(0 

k) 

0.4 

Mixed convection is characterized by a common 
boundary layer 6,(x). 
The velocity profile within the boundary layer is 
a superposition of velocity profiles in the two pure 
convection regimes. 
The thermal boundary layer is equal to the hydro- 
dynamic boundary layer (which corresponds to 
Pr E 1). 

2.2. Basic equations 
For the case of laminar regime and incompressible 

constant potential flow, with assumptions (a)-(e) cited 
above, the conservation equations take the following 
integral forms. 

Momentum equation : 

d a, 

-[S dx 0 
u,( u, - U,) dy 1 

energy equation : 

d ‘, 

U dx 0 
u,,,(T,--T,,Jy] = a(F); (4) 

As mentioned above, the analysis presented in this 
work is based on the existence of a common boundary 
layer S,(x), in which the velocity profile is a super- 
position of well-known profiles of pure natural and 

forced convection, as follows : 

Urn(x) = rm (i#- 2$ 
f uJ;(t) - ;($J] t5) 

where the positive sign is for AMC and the negative 
sign is for OMC. 

For pure natural convection and laminar flow 
regime with uniform heat flux boundary conditions 
Sparrow et al. [13] proposed the following form for 
the normalized velocity : 

(Ra32’5 (6) 

and 

x 315 

r,= rL x . 0 (7) 

The common temperature profile within the boundary 
layer is assumed to be : 

T -T 
m m 

A characteristic parameter for mixed-convection 
phenomena is defined as : 

3.5u, 
/I=,. 

L 

Inserting equation (6) into equation [9] to get : 

% 
/3 = 0.614Pr:/5(0.8+Prr)2/5(GrZ)Z,S. (10) 

3. ASSISTING MIXED CONVECTION 

3.1. First approximation 
In this approximation it is assumed that the value 

of I,,, in equation (5), is not affected by the forced 
convection and is equal to that of natural convection, 
namely, rm = r,. 

Using the velocity profile from equation (5) with 
the positive sign, and the temperature profile from 
equation (8), with the assumption (h) cited above, and 
solving the energy equation (4), one obtains : 

6,f,(rX+3.5U,) = 60afx+C, (‘11) 

atx=O,&,=OandC,=O. 
The boundary-layer thickness 6, for AMC 

becomes : 

(12) 

The non-dimensional heat transfer coefficient be- 
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comes : Integrating equation (16) with the boundary condition 

I/‘[ I+ ;(;)“‘]“’ (13) 

at x = 0, 6, = 0, one obtains : 

(Nu,), = 0.483Rej” Prf 
s; = 

60afx 

r,+3.5u; (17) 
or in another form 

r 
rearranging equation (17) and solving for I,,, 

(Nu,), = 0.233Re, Prf 
1 

60~ 3 5u l-,=-- . s: m. (18) 

+0.38(~~s(Gr~Pr~)2’~]“2. (14) for ds,,dx to obtain Inserting equation (18) into equation (15) and solving 

3.2. The analytical-numerical solution (second approxi- 
mation) 

In the second approximated analysis it is assumed 
that I, is affected by the forced flow and should 
be calculated simultaneously with the boundary-layer 
thickness. Therefore, the momentum and the energy 
conservation equations are solved by using the pre- 
liminary assumptions and by using the velocity and 
temperature profiles. 

Inserting equations (5) and (8) in equations (3) and 
(4), and performing the integration one obtains : 

)I 
=-z(iU.+r.)+$$ (15) 

-(25+14I’rr)2($)- iGrzrfl]/ 

[$($$25($$(61+ :Re:] (19) 

which is a first-order ordinary differential equation. 
Equation (19) is solved numerically by the well 

known fourth-order Runge-Kutta integration 
routine, with the physical condition of I, > 0. 

From equation (18) this condition becomes : 

and 

(16) ’ is shown m Fig. 2. 

which defines the starting condition for the numerical 
integration. 

A comnarison between the two theoretical results 

Relation bebeen theorettcsl results 

0.80 - 

I I I I I 
1 2 3 4 5 

&Q/5 

* 

FIG. 2. Comparison between the two theoretical approximations. 
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4. OPPOSING MIXED CONVECTION 

For the case of OMC it is assumed that the value 

of r,,, in equation (5) is not affected by the forced 
convection, and is equal to that of natural convection, 
namely I-, = r,. 

Inserting the velocity profile from equation (5) with 
the negative sign, and the temperature profile from 
equation (8) with the assumption (h), cited above, and 
solving the energy equation (4), one obtains : 

6,$-,-3.5U,] = 60crfx+ci (21) 

where c, is a constant, to be evaluated from the bound- 
ary condition. We define a region where forced con- 
vection is dominant, when r,-- 3.5U, < 0, and the 
region where natural convection is dominant, when 
r,-3.5U, > 0. When r,-3.5U, = 0, we have a 

critical point (x = x,,), where a transition from one 
region to another is expected. 

The heat transfer coefficient in the uniform heat 
flux boundary condition is h, = kf/6,, and in non- 
dimensional form : 

N&(X) = y ; f Nz+(x) = F; f N+(x) = F. f 
(22) 

4.1. Dominant forced convection region (Fig. 1 b) 
The forced convection region is defined in the range 

of 0 <x< x,, and r,- 3.5U, < 0 as mentioned 
above. At the limit where x = 0 also r, = 0 and the 
boundary-layer thickness is that of a pure forced con- 
vection, namely : 

(23) 

Therefore, the value ci in equation (21) becomes : 

c, = C, = -6OaG. (24) 

Rearranging equation (21) with the constant C, from 
equation (24), and inserting the non-dimensional par- 
ameter /?, defined in equation (9), the boundary-layer 
thickness in the forced convection dominant region 
becomes : 

&4x) = i”“!g”[ 1 _(,,~;(x,L)3,5])‘:l. (25) 

The requirement of real value for 6,(x), provides the 
upper limit for this region, x,, : 

1 x3’5 

l-B L 0 ‘O. 
(26) 

After rearranging equation (26) the limit becomes : 

x,, = pL. (27) 

Using equation (22) and the definition of heat transfer 
coefficient h,, and the boundary-layer thickness 6, 
from equation (25) the normalized heat transfer 

coefficient of OMC in the forced convection dominant 
region is : 

where 

U,(L - x) Pr 

vf 
P (29) 

4.2. Dominant natural convection region (Fig. lc) 
In the region of x,, < x < L, where natural con- 

vection is dominant r,-3.5U, > 0 as mentioned 
above. At the limit x = x,,, r,-3.5U, = 0, and the 
condition 6,(x) # 00 in equation (21) requires : 

ci = C3 = - hOcr,x,, = - 60~L/?~‘~. (30) 

Rearranging equation (21). inserting the constant C3 
from equation (30) and the characteristic parameter B, 
the common boundary layer in the dominant natural 
convection region becomes : 

Using equation (22), the general definition of h, and 
the boundary-layer thickness from equation (31), the 

normalized heat transfer coefficient of OMC in the 
natural convection dominant region is : 

where 

hN(x) = 0.616: & 
(. > 

l/5 

(Ra:)“5. (33) 
f 

5. DISCUSSION 

5.1. Assisfing mixed convection 
In order to correlate the results of AMC in this 

work, the approach of Churchill [3] was adopted, 
namely : 

z=[l+&ry’” for Nu,<Nu, (34) 

and 

$=[l+($lJ’” for Nu,<Nz+.+ (35) 

In this approach the two extreme solutions should be 
defined. 

Using equation (14) and letting Gr,*+ 0 will give 
the equation for pure forced convection : 

(Nu~)~ = 0.483ReJ12 Pr/” (36) 

which is very close to the classical solution of Kays 
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[14] (for Pr, E 1) : 

(Nz+)~ = 0.453Re:/* Pr,!13. (37) 

Letting Re, + 0 in equation (14) will give the equation 
for pure natural convection : 

Pr:” 
(hA = 0.616(Gr~PrJ”5(0~8+prf),,~ (38) 

which is in agreement with the correlation of Vliet [I 51 
(for Pr,a 1): 

(Nu& = 0.60(Gr:Prf)‘/‘. (39) 

By comparing equation (14) with (34) or (35) and 
using equations (36) and (38), the value of n is immedi- 
ately determined to be n = 2 which is the result of the 
the first approximation. 

The results of the second approximation when using 
equations (36) and (38) in equation (34) or (35) are 
best fitted to the curve in which n = 4. However, 
experimental data of Bamea [ 163 when put in the form 
of equation (34) or (35) and by using (36) and (38) is 
correlated best with n = 3, as shown in Fig. 3. 

Therefore it is suggested to correlate AMC with the 
following equation : 

N% - - ReO.s - [0.483Pr:‘)3 
x 

+ 0.616 
[ 

~(&~‘I’>“‘. (40) 

Equation (40) is presented in Fig. 4. It predicts an 

increase in heat transfer coefficient for AMC as com- 
pared to the pure modes. The maximum discrepancy 
between the suggested correlation and the first 
approximation is less than 12% whereas this value is 
less than 6% for the second approximation. 

A similar equation for uniform wall temperature 
was given by Brdlik et al. [7]. 

5.2. Opposing mixed convection 
For OMC equations (28) and (32) form a complete 

solution to the full length of the vertical plate, except 
at the critical point x,, = j?‘j3L, as shown in Fig. 5. 

For flow conditions where j3 values are in the range 
of 0 < /I < 1, then x,, < L, a critical point occurs 
within the plate, and a transition from a region of 
dominant forced convection to a region of dominant 
natural convection, will take place. 

This transition means a change in the direction of 
the flow. At the dominant forced convection region, 
the flow near the wall is in the direction of U, (gravity 
direction), and at x > x,, the flow near the wall is in 
the upward direction (against gravity). 

The analysis of the present work predicts a decrease 
in heat transfer coefficient towards the critical point, 
approaching zero value at that point. Mathematically, 
this means a local sharp increase in wall temperature, 
however, at that point other mechanisms of heat 
transfer will occur, resulting in a much lower increase 
of wall temperature. 

In the analytical work of Brdlik et al. [7] with uni- 
form wall temperature, the non-dimensional heat 

0 Ref. 16. 

1 

IX 

1.3 

12 

1.1 

1.0 
I 

FIG. 3. Experimental data in parametric presentation [equation (2)]. 
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Forced convection 1’ 

Free convection I 
/ -,-.- 

Mixed convection ! --__- / 

0.25 

t 

I!1 I I I I 

0.5 1.0 . . 5.0 11 0 

FIG. 4. AMC correlation suggested, equation (40), in comparison with pure convection modes. 

transfer coefficient was given as follows : 

FIG. 5. Heat transfer coefficient in OMC [equations (28) and 
(3211. 

where the positive sign stands for AMC and the nega- 
tive sign is for OMC. Using the definition of j? of the 
present work and rearranging equation (41) for OMC 
to obtain : 

Nu,(x) = 0.343 P -(WQ(x/~)“21 
[l-2/(3fi)(x/L)“2]“” 

(42) 

However, by integrating the energy equation for uni- 
form wall temperature and at OMC, one obtains : 

Nu,(x) = 0.3416 
J 

[1-(1/B)(-w”21 
’ {[1 -(x/L)]+2/(3/3)(~/L)“*}“~’ (43) 

Equation (43) is the correct equation for uniform wall 
temperature, but both equations (42) and (43) are 
restricted to the region of dominant forced convec- 
tion. Moreover, if fl< 1, the solution does not cover 
the full length of the plate and is limited to x < /I*L.. 

The definition of regions dominated by forced or 
natural convection, and ihe analytical solution for 
each region with uniform heat flux, is the contribution 
of this work. 
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6. CONCLUSIONS 

The simple analysis which is presented in this work 
provides means for calculating the heat transfer 
coefficient in laminar external flow in mixed convec- 
tion. For the case of AMC one simple equation covers 
the entire length of the plate. However, for OMC two 
simple equations, depending on whether the region is 
dominated by forced convection or by natural con- 
vection, are needed. The parameter j that is used, 
gives the ratio between the governing characteristic 
values of each pure mode of convection. 

The range of mixed convection is when 0.1 < /? < 2. 
For p < 0.1, we have pure natural convection, and 
when ,8 > 2, we have pure forced convection. 

The AMC increases the values of the heat transfer 
coefficients, however, in OMC this value is decreased 
in both dominated regions, approaching very low 
values in the critical point, resulting in an increase of 
wall temperature. 

The importance of such temperature increase, and 
the uncertainty of the heat transfer mechanism in the 
transition zone (near x = x,3, calls for more exper- 
imental work. 
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ANALYSE SIMPLE DE LA CONVECTION MIXTE AVEC FLUX THERMIQUE UNIFORME 

R&m&Pour un fluide force sur une plaque verticale plane, chauff&e a flux thermique uniforme, la 
difference de temperature entre la surface et le fluide modifie la densitb du fluide et provoque la convection 
naturelle, d’oti un couplage de convection. Dans le cas dune perte de refroidissement par accident (LOCA) 
dans un reacteur nuclbaire, les deux types de convection peuvent &re de mime importance. Quand le fluide 
est force dans la direction ascendante, on a une convection mixte assist&e (AMC) et en direction opposbe 
c’est le regime de convection mixte contraribe (OMC). On presente une analyse simple qui permet devaluer 
le coefficient de transfert en AMC ou en OMC. Elle suppose que les couches limites dynamiques et 
thermiques sont les memes, aussi que le profil de vitesse dans la couche limite est une superposition de 
convections pure for&e et pure naturelle. Un parametre caracteristique /I = 3,5 U,/T est defini, lequel 
indique l’influence relative de chaque mode pur dans le mixage. Pour AMC, on propose une formule 

Nu,_ - 
Re:5 

[0,483Pr:‘2]3 + [0,616(~~~“s(~~‘s]3~s. 

Pour OMC, la solution est obtenue en divisant l’analyse en deux regions: la premiere dominbe par la 
convection for&e et la seconde dominb par la convection naturelle. 
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EINFACHE ANALYSE DER MISCH-KONVEKTION BEI GLEICHFGRMIGER 
WARMESTROMDICHTE 

Zusammenfassung-Bei erzwungener Fluid-Stromung kings einer vertikalen ebenen Platte, die eine gleich- 
formige Wlrmestromdichte abgibt, wird Warme durch erzwungene Konvektion iibertragen. Die Tem- 
peraturdifferenz zwischen ObertIHche und Fluid fiihrt zu einer Dichteiinderung im Fluid und damit zu 
nattirlicher Konvektion. Deshalb ist erzwungene Konvektion immer mit natilrlicher Konvektion gekoppelt. 
Im Falle eines Unfalles mit Kiihlmittelverlust in einem Kemreaktor kann die durch erzwungene Konvektion 
iibertragene Warme dieselbe GroBenordnung annehmen, wie die durch natiirliche Konvektion tibertragene 
und dadurch zur Misch-Konvektion fiihren. Striimt das Fluid nach oben, so ergibt sich die Bedingung fur 
‘Assisting Mixed Convections’ (AMC), und in entgegengesetzer Richtung fur ‘Opposing Mixed Convection’ 
(OMC). Es wird eine einfache Analyse vorgestellt, welche den Wlrmetibergangskoefhzienten fur AMC 
und OMC bestimmt. Fur die Analyse wird angenommen, da8 die hydrodynamische und die thermische 
Grenzschicht identisch sind. Es wird femer angenommen, dal3 sich das Geschwindigkeitsprofil in die 
Grenzschicht durch ifberlagerung aus reiner erzwungener und reiner natiirlicher Konvektion ergibt. Es 
wird ein charakteristischer Parameter /I = 3,5U,/Fr definiert, welcher den EinIIuB jeder der beiden reinen 
Konvektionsarten in der Mischform angibt. Fur AMC wird folgende Beziehung vorgeschlagen : 

Fur OMC erhllt man die Losung durch Einteilung in zwei Zonen : In eine erste mit erzwungener und eine 
zweite mit natiirlicher Konvektion. 

IIPOCTOH AHAJIM3 CMEIBAHHOI? KOHBEKHMM C OAHOPOjIHbIM IIOTOKOM 
TEIUIA 

Aunoraum-Hpe ~BMXeHHH KKHIIKOCTA OKOn BepTBKanbHOfi fl,lOCKOii ".JacTWHbl, reHep&ipyiOtUeti 

OL,HOpOLiHbI~ TenflOBOii nOTOK,npOACXOIIHT nepenaga TenAa BblHyWteHHOii KOHBeKUHei?.h3;lWlHe TeM- 

nepaTyp nOBCpXHOcTB H X4KHIIKOCTI1 Bb13bIBaeT H3MeHeHHI IIJIOTHOCTA XWLIKOCTW, Bb13blBaK ecTecTBeH- 

HyH) KOHBeKuHH). nO?TOMy BblHy~JJeHHOi KOHBeKUI(A BCerna COnyTCTByeT ecTecTBeHHZ,. B ChyWC 

liBapLiH c noTepee oxmna-renn B anepHoM peEiKTOpe (AIIO). KOJlWieCTBO Tenna,nepenasaeMoe BblHyW 

JlCHHOii KOHBeKUeeii MOW(eT n0 nOpS,nKy Be,IWW,HblCOBnailaTb C nepeDaBaeMblM CCTeCTBeHHOfi KOHBCK- 

Weir, COJLEiBaR CMCUlaHHO-KOHBeKTLlBHOe Te'leHWe. Ecna XWiLlKOCTb LlBHX(eTCII BBepX, MMCCT .MCCTO 

peWiM yCHJlMBaEOUle~CMeUIaHHOii KOHBeKUHH (YCK),npe PBHZKeHWH XGiLIKOCTH B HanpaB.ZCHHN,npOTM- 

BononomHoM nelcTem0 nonbeMHoti ctinbl, ua6nronaercn pemeM nonaanaiome~ cMemauuoii souaekumi 
(IICK). flpencraanes npocrofi aHanus, ouemiaaromltii K03~&iuHeHTbI TemOO6MeHa npH YCK H I'ICK. 

B nposonmfobt aHam3e npennonaraeTcn, ST0 mnponeHabwiecKt.iB H TennoBoR norpamwb~e C.~OH 

paeabl. qT0 npo@mb CKO~~CTH B npenenax norpatuiworo c.101 npem2TaBnne-r coGoR cynepnosnunio 
'IHCTO BbIHyWlCHHOti M 9HCTO CCTCCTBeHHOfi KOHBeKuWii. HaiineH. XapaKTepHbIfi napS,CTp ii= 

3,5 u,/l-, , OnpCIWl,SO",~fi OTHOCHTeJlbHOe BJIHIIHHe KaxnOrO &I3 peW,MOB WCTOii KOHBCK"I(,, Ha 

CMeuraHHym.flm YCK npennowteuacnenymuaa 3aBHcmfOcTb 
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&It HCK pemewie nonyqeH0 pa3nenbHbIM aHanH30M nByx o6nacreii:c npeo6aanamie%r abrHy;rtneuuofi 
M eCTeCTBeHHOti KOHBCKUNH. 


