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Abstract—When a fluid is forced to flow over a vertical, flat plate, generating uniform heat flux, heat is
transferred by forced convection. The temperature difference between the surface and the fluid creates
changes in the fluid density, causing natural convection. Therefore forced convection is always coupled
with natural convection. In the case of loss of cooling accident (LOCA) in a nuclear reactor, the heat
transferred by forced convection can be of the same order of magnitude as that of natural convection,
forming a mixed-convection heat transfer mode. When the fluid is forced to flow in the upward direction,
we have an assisting mixed convection (AMC), and when the fluid is forced in the opposite direction to
the buoyant motion, the condition is opposing mixed convection (OMC). A simple analysis is presented,
which evaluates the heat transfer coefficient in AMC and in OMC. The analysis assumes that the hydro-
dynamic and the thermal boundary layers are the same. It assumes, further, that the velocity profile within
the boundary layer is a superposition of pure forced and pure natural convection. A characteristic
parameter, § = 3.5U_/T", is defined which indicates the relative influence of each pure convection mode
in the mixed convection phenomena. For AMC a correlation is proposed as follows:
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For OMC, the solution is obtained by dividing the analysis into two regions : the first, a region dominated
by forced convection, and the second, a region dominated by natural convection.

1. INTRODUCTION

IN MANY of the so-called forced-convection problems
encountered in engineering fields, the effect of natural
convection is insignificant and can be ignored.

For the cases where the two modes of convection
are of the same order of magnitude the coupling effect
isimportant and a mixed convection regime is defined.
A practical instance of this occurs in loss of cooling
accident (LOCA) events of nuclear reactors where
emergency conditions result in a low forced flow
superimposed on the natural convection in the reactor
core. This is a complex problem, because of the large
number of interacting parameters, including the rela-
tive direction of the forced and natural convections,
the geometry of the arrangement, the flow condition
and the boundary conditions. When the fluid is forced
in the same direction as the buoyant motion, the
regime is an assisting mixed convection (AMC), and
when the forced flow is in the opposite direction we
have an opposing mixed convection (OMC).

A schematic description of the phenomena is pre-
sented in Fig. 1.

For the case of AMC, the early work by McAdams
[1] recommended the effect of AMC be ignored and
either forced or natural convection used instead,
whichever is the higher. The combined effect was pre-
sented by Churchill ez al. [2], suggesting the use of the

mathematical form:

Y =[142Z"" n

which presents a general expression for a combined
effect of two independent continuous phenomena. For
the case of AMC, Churchill {3] suggested the use of a
correlation based on equation (1) as follows:

Nu,, NuyY |

Nug [1 + <Nup>:| @
where n is an exponent, to be selected either from
theoretical analysis or according to experimental data.
The values of Nuy and Nu; are based on correlations
for pure convection effect [3].

The analytical-numerical solution by Wilks [4],
when put in the form of equation (2), suggests n = 3.
An earlier work by Acrivos [5] and a full numerical
solution by Oosthuizen ez al. [6] correlated to equation
(2) with n = 4. On the other hand, Brdlik et al. [7]
solved analytically only the energy equation in the
boundary-layer mixed convection and found n = 2.

Other previous solutions [8—11] based on infinite
series or complete numerical profiles of the heat trans-
fer coefficient are usually presented in graphs or tables
and are difficult to use from a design point of view.

For the cases of OMC, Acrivos [12] in a semi-
analytical solution, integrated the conservation equa-
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B coefficient of volumetric expansion
C,,C,,C; constant of integration (11),

(24) and (30), respectively
¢,  specific heat capacity
F  parametric function
g  gravitational acceleration
Gr  Grashof number for UWT,
gBATx’|v?
Grashof number for UHF, gBgx*/(Kv?)
K thermal conductivity
L length
n
Ni

Gr*

exponent, equation (1)

© Nusselt number
Pr  Prandtl number
g  heat flux
Ra* Rayleigh number for UHF, Gr* Pr
Reynolds number
temperature
velocity
coordinates
Y  dependent function, equation (1)

QNP

NOMENCLATURE

Z  independent function, equation (1).

Greek symbols
o thermal diffusivity
B dimensionless characteristic parameter,
equation (9)
I'  normalized velocity caused by natural
convection
boundary-layer thickness
kinematic viscosity.

< QO

Subscripts

wall

critical

forced convection
characteristic length
mixed convection
natural convection
length dependent
potential flow

film temperature properties.
thermal

~thgRzZEbmg e

tions in the boundary layer, using the Karman-
Pohlausen method. His results were presented in the
form of Nu/Re’°® = F(5, 8,) and the function was cal-
culated numerically. In a later work by the same
author [5], the previous solution was compared with
a complete numerical solution and found to be in
disagreement when Pr > 1. As a result of that, two
correlations were proposed :

(a) For Pr — 0 the following relation was suggested :
"Nu? = Nuf— Nuj,, assuming no negative values.
(b) For Pr— oo and above a critical point (which

(a)

' 1
/]
/]
X Uo a
cr;' Xerf
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Y,
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/ fre——-
2
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Y x
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will be discussed later), the following relation was
suggested : Gr,/RePr'® = 1.2

In a more recent work, Brdlik et al. [7] presented
an analytical solution for the case of uniform wall
temperature. The analysis given in their work,
assumed a velocity profile within the boundary layer
which is a superposition of natural and forced con-
vection. They came up with one equation for AMC
and OMC, by only changing the sign of Grashof num-
ber.

The present work evaluates analytically the heat

{b) {c)

FiG. 1. Mixed convection, different modes: (a) AMC; (b) OMC forced convection dominated ; (c) OMC
natural convection dominated.
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transfer coefficients in mixed convection on a vertical,
flat plate with uniform heat flux and in laminar flow
conditions. The analysis is based on adopting the con-
cept of superposition of the velocities, and solving the
conservation equations. For the case of AMC two
approaches were used, whereas for OMC it was
assumed that two separate regions exist on the plate,
the first where forced convection is dominant and the
second where natural convection is dominant.

2. THEORETICAL SOLUTION

2.1. Preliminary assumptions
To simplify the analysis the following was assumed :

(a) Incompressible, steady, laminar flow.

(b) No pressure gradients perpendicular to the direc-
tion of flow (x-direction).

() Negligible heat conduction in the direction of the
external field.

(d) Constant potential flow, U, (x) = U,, in the
external field.

(e) Constant fluid properties, except for the density
change with temperature, in the body force term
(Boussinesq approximation).

In addition to the above standard assumptions, spe-
cial assumptions were added as follows:

(f) Mixed convection is characterized by a common
boundary layer 6,(x).

(g8) The velocity profile within the boundary layer is
a superposition of velocity profiles in the two pure
convection regimes.

(h) The thermal boundary layer is equal to the hydro-
dynamic boundary layer (which corresponds to
Pr=1).

2.2. Basic equations

For the case of laminar regime and incompressible
constant potential flow, with assumptions (a)—(e) cited
above, the conservation equations take the following
integral forms.

Momentum equation:

d [ [on
]

=—vf(‘3—‘“)o+gﬂ om(Tm—Tm)dy. 3)

energy equation :

d[ [* ] 0T
a; [J; Um(Too - Tm) dy_ =& <’5)0 (4)

As mentioned above, the analysis presented in this
work is based on the existence of a common boundary
layer 8,(x), in which the velocity profile is a super-
position of well-known profiles of pure natural and
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forced convection, as follows:

war-r(3)o-2)
o)) o

where the positive sign is for AMC and the negative
sign is for OMC.

For pure natural convection and laminar flow
regime with uniform heat flux boundary conditions
Sparrow et al. [13] proposed the following form for
the normalized velocity :

_ af Prf 25 ©nys
Te=377 (0.8 +Prf> (Rap) ©
and
x 3/5
T, = r‘(Z) . o)

The common temperature profile within the boundary
layer is assumed to be:

_Wmfy_YY
T.—T, = ZKf(l— 5m>. ®)

A characteristic parameter for mixed-convection
phenomena is defined as:

3.5U,
B="%" ©
Inserting equation (6) into equation [9] to get:
— 0.614Prl/3(0.8+ Pro¥s- oL 10
B— .61 Ty ( + rf) W ( )

3. ASSISTING MIXED CONVECTION

3.1. First approximation

In this approximation it is assumed that the value
of I', in equation (5), is not affected by the forced
convection and is equal to that of natural convection,
namely, I', = T,.

Using the velocity profile from equation (5) with
the positive sign, and the temperature profile from
equation (8), with the assumption (h) cited above, and
solving the energy equation (4), one obtains:

83T, +3.5U,) = 600x+C, (‘1
atx=0,6,=0and C,=0.
The boundary-layer thickness &, for AMC
becomes :
60ax |2

The non-dimensional heat transfer coefficient be-
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COmeES :

(Nuy), = 0.483Re;/2Pr3/2[1 n %(%)3/5]1/2 (13)
or in another form

(Nuy,), = [0.233Re, Pr,

P 25 12
+0.38< L ) (GrfPrf)2/5:| . (14)

0.8+ Pr;

3.2. The analytical-numerical solution (second approxi-
mation)

In the second approximated analysis it is assumed
that T, is affected by the forced flow and should
be calculated simultaneously with the boundary-layer
thickness. Therefore, the momentum and the energy
conservation equations are solved by using the pre-
liminary assumptions and by using the velocity and
temperature profiles.

Inserting equations (5) and (8) in equations (3) and
(4), and performing the integration one obtains:

I. SHAI and Y. BARNEA

Integrating equation (16) with the boundary condition
at x =0, 6, = 0, one obtains:

600

2 __
Om = C,+3.5U," an
rearranging equation (17) and solving for T,
60
r, = —;‘;—x 350, (18)

Inserting equation (18) into equation (15) and solving
for dd,,/dx to obtain

ddn [60(8 + 7Prf)< x )3

dx Pr? 5o
x 7 6.V
) LGl 2
Go)-sor()lf
20(xY s Re)(x Y, Lpal g9
Pei\5. Pr \5.) T3Re| U9

which is a first-order ordinary differential equation.
Equation (19) is solved numerically by the well

known fourth-order Runge-Kutta integration

routine, with the physical condition of I';, > 0.

R

eX
—(25+14Pr) 7"

d 5 T + U, 39 02 From equation (18), this condition becomes :
dx| "\105 140 280 ° _
X 7
3 Bas? => \/;Rex Pr; (20)
= ZU +T, +& (15) Om 120
0 \2 6K; )
which defines the starting condition for the numerical
and integration.
d A comparison between the two theoretical results
a[&ﬁ,(l‘m+3.5Uw)] = 600, (16) is shown in Fig. 2.
Relatfon between theoretical results
l.oﬂr
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FiG. 2. Comparison between the two theoretical approximations.
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4. OPPOSING MIXED CONVECTION

For the case of OMC it is assumed that the value
of I',, in equation (5) is not affected by the forced
convection, and is equal to that of natural convection,
namely ', =T,.

Inserting the velocity profile from equation (5) with
the negative sign, and the temperature profile from
equation (8) with the assumption (h), cited above, and
solving the energy equation (4), one obtains :

82, —3.5U,} = 60ax+c; @1

where ¢, is a constant, to be evaluated from the bound-
ary condition. We define a region where forced con-
vection is dominant, when I',—3.5U_ < 0, and the
region where natural convection is dominant, when
I',—3.5U,>0. When T',—3.5U, =0, we have a
critical point (x = x,,), where a transition from one
region to another is expected.

The heat transfer coefficient in the uniform heat
flux boundary condition is A, = k¢/é,, and in non-
dimensional form:

h h hy
Nunx) = "p; Nugl) =75 Nun(x) = 5

ke
(22)

4.1. Dominant forced convection region (Fig. 1b)

The forced convection region is defined in the range
of 0 <x<x, and I',—3.5U, <0 as mentioned
above. At the limit where x = 0 also ', = 0 and the
boundary-layer thickness is that of a pure forced con-
vection, namely :

600,L
2 - 52—
(6m)x=0_6F_ 35U00 (23)
Therefore, the value ¢; in equation (21) becomes :
¢, = C,=—60alL. (24)

Rearranging equation (21) with the constant C, from
equation (24), and inserting the non-dimensional par-
ameter f, defined in equation (9), the boundary-layer
thickness in the forced convection dominant region
becomes :

600 (L — x) 1 "
3.50, [1—(1/B)(x/L)’/’]} e

The requirement of real value for §.,(x), provides the
upper limit for this region, x,,:

1/x\*
After rearranging equation (26) the limit becomes:

Xe = BL. @n

Using equation (22) and the definition of heat transfer
coefficient 4, and the boundary-layer thickness 6,,
from equation (25) the normalized heat transfer

On(¥) = {

(26)
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coefficient of OMC in the forced convection dominant
region is:

ha(X)  Nun(x) 1/ x5
()~ Nug(x) [1 - p(z) ] (28)

where

~ K\ UL~
hp(x)—0.483<L x) P 09

4.2. Dominant natural convection region (Fig. 1c)

In the region of x., < x < L, where natural con-
vection is dominant I',—3.5U_, > 0 as mentioned
above. At the limit x = x, I',—3.5U, =0, and the
condition J,,(x) # o in equation (21) requires :

¢; = Cy=—600x, = — 600, LB 30)

Rearranging equation (21), inserting the constant C,
from equation (30) and the characteristic parameter §,
the common boundary layer in the dominant natural
convection region becomes :

60aL| (x/L)—B** ||"?
5m(,‘c) = AT I L .
Iy LG/D) -8
Using equation (22), the general definition of A4, and
the boundary-layer thickness from equation (31), the

normalized heat transfer coefficient of OMC in the
natural convection dominant region is:

hn(X) _ Nu_(x) _ |:(x/L)__ﬁ(x/L)2/sj|1/z -

@3

h(x)  Nun(x) | (x/L)—p"
where
B K Pre N s
hN(x)_0'616;<0_8+Prf) (Ra®)'>.  (33)

5. DISCUSSION

5.1. Assisting mixed convection

In order to correlate the results of AMC in this
work, the approach of Churchill [3] was adopted,
namely :

Nllm N“N n {l/n
N = [1 + <N\Mp>:l for Nuy < Nug (34)

and

Nitw 1y (MY 1™ for Nug < N 35

N~ Nuy or Nug un. (35)
In this approach the two extreme solutions should be
defined.

Using equation (14) and letting Gr¥— 0 will give
the equation for pure forced convection :
(Nug), = 0.483Re)/? Pr{/? (36)

which is very close to the classical solution of Kays
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[14] (for Pre= 1):

(Nug), = 0.453Re /2 Prli3, (37

Letting Re, — 0 in equation (14) will give the equation
for pure natural convection :

Priis

= *py /5
(Nuy), = 0.616(GriPry V* =

(38)
which is in agreement with the correlation of Vliet {15}
(for Prex~1):

(Nuy), = 0.60(Gr*Pro) /5. (39)

By comparing equation (14) with (34) or (35) and
using equations (36) and (38), the value of n is immedi-
ately determined to be n = 2 which is the result of the
the first approximation.

The results of the second approximation when using
equations (36) and (38) in equation (34) or (35) are
best fitted to the curve in which # = 4. However,
experimental data of Barnea [16] when put in the form
of equation (34) or (35) and by using (36) and (38) is
correlated best with n = 3, as shown in Fig. 3.

Therefore it is suggested to correlate AMC with the
following equation :

Nu,,

W = {[0483}’7'(1/2]3

(Raf)'“ Pr, 1/5T3)1/3
+|:0'616h——Re,?‘5 08+ Pr, . (40)

Equation (40) is presented in Fig. 4. It predicts an

L. SHAl and Y. BARNEA

increase in heat transfer coefficient for AMC as com-
pared to the pure modes. The maximum discrepancy
between the suggested correlation and the first
approximation is less than 12% whereas this value is
less than 6% for the second approximation.

A similar equation for uniform wall temperature
was given by Brdlik ez al. [7].

5.2. Opposing mixed convection

For OMC equations (28) and (32) form a complete
solution to the full length of the vertical plate, except
at the critical point x,, = $¥3L, as shown in Fig. 5.

For flow conditions where § values are in the range
of 0 < B <1, then x, < L, a critical point occurs
within the plate, and a transition from a region of
dominant forced convection to a region of dominant
natural convection, will take place.

This transition means a change in the direction of
the flow. At the dominant forced convection region,
the flow near the wall is in the direction of U, (gravity
direction), and at x > x_, the flow near the wall is in
the upward direction (against gravity).

The analysis of the present work predicts a decrease
in heat transfer coefficient towards the critical point,
approaching zero value at that point. Mathematically,
this means a local sharp increase in wall temperature,
however, at that point other mechanisms of heat
transfer will occur, resulting in a much lower increase
of wall temperature.

In the analytical work of Brdlik et al. [7] with uni-
form wall temperature, the non-dimensional heat

s
(o (Nug o« 8+P
udr " 0483 R P, el o [ﬁk_‘}

4L J414

Ref. 16.
13 —413
12 412
L Jn

(Nu:))a
10 0 3 1 Wi 10
0 01 02 03 04 05 06 07 028 09 03 08 07 085 05 04 03 02 O 0

FiG. 3. Experimental data in parametric presentation [equation (2)].
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F1G. 4. AMC correlation suggested, equation (40), in comparison with pure convection modes.

transfer coefficient was given as follows:

Nu, (Gr,\"
Re%5 ™ \Re?
{0346 Pr'(Re/Gr,) "2+ 0.51[Pr/(0.952 + Pr)] '3}

{1.015(Re}/Gr,)'"* £[1/(0.952+ Pr)] /?} V2
(41

110

<08

0.81

0.7

0.4

0.3 ~o3

o-

oy

gk
3
8
8
4
H
2

0 01 a2
X/

Fi1G. 5. Heat transfer coefficient in OMC [equations (28) and
32)].

where the positive sign stands for AMC and the nega-
tive sign is for OMC. Using the definition of § of the
present work and rearranging equation (41) for OMC
to obtain:

U,x

Nity(x) = 0.343 [===Pr [1-(/B (/L)'

[(1-2/GB)(x/L) >
42)

However, by integrating the energy equation for uni-
form wall temperature and at OMC, one obtains:

U
Nuy(x) = 0.3416 /%xPr

9 [1-/Bx/L)'")
{1= /D +2/3B) (/L) 7}

43)

Equation (43) is the correct equation for uniform wall
temperature, but both equations (42) and (43) are
restricted to the region of dominant forced convec-
tion. Moreover, if § < 1, the solution does not cover
the full length of the plate and is limited to x < B>L.

The definition of regions dominated by forced or
natural convection, and the analytical solution for
each region with uniform heat flux, is the contribution
of this work.
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6. CONCLUSIONS

The simple analysis which is presented in this work
provides means for calculating the heat transfer
coefficient in laminar external flow in mixed convec-
tion. For the case of AMC one simple equation covers
the entire length of the plate. However, for OMC two
simple equations, depending on whether the region is
dominated by forced convection or by natural con-
vection, are needed. The parameter § that is used,
gives the ratio between the governing characteristic
values of each pure mode of convection.

The range of mixed convection is when 0.1 < § < 2.
For B < 0.1, we have pure natural convection, and
when f > 2, we have pure forced convection.

The AMC increases the values of the heat transfer
coefficients, however, in OMC this value is decreased
in both dominated regions, approaching very low
values in the critical point, resulting in an increase of
wall temperature.

The importance of such temperature increase, and
the uncertainty of the heat transfer mechanism in the
transition zone (near x = x,,), calls for more exper-
imental work.
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ANALYSE SIMPLE DE LA CONVECTION MIXTE AVEC FLUX THERMIQUE UNIFORME

Résumé—Pour un fluide forcé sur une plaque verticale plane, chauffée a4 flux thermique uniforme, la
différence de température entre la surface et le fluide modifie la densité du fluide et provoque la convection
naturelle, d’ot un couplage de convection. Dans le cas d’une perte de refroidissement par accident (LOCA)
dans un réacteur nucléaire, les deux types de convection peuvent étre de méme importance. Quand le fluide
est forcé dans la direction ascendante, on a une convection mixte assistée (AMC) et en direction opposée
c’est le régime de convection mixte contrariée (OMC). On présente une analyse simple qui permet d’evaluer
le coefficient de transfert en AMC ou en OMC. Elle suppose que les couches limites dynamiques et
thermiques sont les mémes, aussi que le profil de vitesse dans la couche limite est une superposition de
convections pure forcée et pure naturelle. Un paramétre caractéristique § = 3,5 U /T est défini, lequel
indique Vinfluence relative de chaque mode pur dans le mixage. Pour AMC, on propose une formule

Nu,,
Red’ =

(Ra::)l/s Pr[ 175 {3)1/3
/213
{[0,483}"‘{ ] +|:0,616W 0,8+P"f .

Pour OMC, la solution est obtenue en divisant I’analyse en deux régions: la premiére dominée par la
convection forcée et la seconde dominée par la convection naturelle.
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EINFACHE ANALYSE DER MISCH-KONVEKTION BEI GLEICHFORMIGER
WARMESTROMDICHTE

Zusammenfassung—Bei erzwungener Fluid-Stromung lings einer vertikalen ebenen Platte, die eine gleich-
férmige Warmestromdichte abgibt, wird Wirme durch erzwungene Konvektion {ibertragen. Die Tem-
peraturdifferenz zwischen Oberfliche und Fluid fithrt zu einer Dichtednderung im Fluid und damit zu
natiirlicher Konvektion. Deshalb ist erzwungene Konvektion immer mit natiirlicher Konvektion gekoppelt.
Im Falle eines Unfalles mit KiihImittelverlust in einem Kernreaktor kann die durch erzwungene Konvektion
iibertragene Wirme dieselbe GréBenordnung annehmen, wie die durch natiirliche Konvektion iibertragene
und dadurch zur Misch-Konvektion fiihren. Stromt das Fluid nach oben, so ergibt sich die Bedingung fiir
‘Assisting Mixed Convections’ (AMC), und in entgegengesetzer Richtung fiir ‘Opposing Mixed Convection’
(OMC). Es wird eine einfache Analyse vorgestellt, welche den Wiarmeiibergangskoeffizienten fiir AMC
und OMC bestimmt. Fiir die Analyse wird angenommen, daB die hydrodynamische und die thermische
Grenzschicht identisch sind. Es wird ferner angenommen, daB sich das Geschwindigkeitsprofil in die
Grenzschicht durch Uberlagerung aus reiner erzwungener und reiner natiirlicher Konvektion ergibt. Es
wird ein charakteristischer Parameter f§ = 3,5U,,/T", definiert, welcher den EinfluB jeder der beiden reinen
Konvektionsarten in der Mischform angibt. Fiir AMC wird folgende Beziehung vorgeschlagen :
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Fiir OMC erhilt man die Losung durch Einteilung in zwei Zonen : In eine erste mit erzwungener und eine
zweite mit natiirlicher Konvektion.

ITPOCTON AHAJIM3 CMELWIAHHOW KOHBEKLIMM C OAHOPOOHBLIM MOTOKOM
TEITIA

AnnoTauns—IIpn OBMXKEHMH XHMIKOCTH OKOJIO BEPTHKAJbLHOM IUIOCKOH TLTACTHHBI, TeHepupyrowed
ONHOPOJHBIA TENJIOBOK NOTOK, NPOMCXOAUT MepeJaya Terla BbiHY)XAeHHOH KoHBeKumeit. Painuue tem-
nepaTyp MOBEPXHOCTH M JKMAKOCTH BBI3bIBACT H3MEHEHHMS IUIOTHOCTH JKMIKOCTH, BbI3blBasi €CTECTBEH-
Hylo KOHBekuMio. ITo3TOMy BBIHYXKICHHOH KOHBEKUMH BCErla CONMYyTCTBYET ecTeCTBeHHas. B ciyuae
4BAPHH C NIOTEPEH OXIanuTens B saepHoM peakTope (AITO), koanvecTBo Tema, nepeaaBaeMoe BbiHYX-
IEHHOW KOHBEKLHMENH MOXET M0 MOPKIKY BEJIHYHHBI COBNANATh C NEpeldaBaeMbIM eCTeCTBEHHOH KOHBEK-
LuMel, co3gaBasi CMEIIAHHO-KOHBEKTHBHOE TeueHMe. EcM KHAKOCTh ABUXETCA BBEpX, UMEET MeECTO
PeXHM yCHIIMBalOWEH cMellaHHON koHBekLM (Y CK), npn IBHXEHHH KHAKOCTH B HarpaB.IeHUH, NPOTH-
BOMO/IOKHOM AeHCTBHIO MOIbEMHOH CHJIbI, HabMr0naeTCA PeXUM NOJABIIAIOIEH CMELUAHHON KOHBEKUNH
(TICK). Tlpenctapiex npocToit aHanus3, oleHnBarolWni ko3dduunenTsl Ten;1oo6Mena npu YCK u INCK.
B nposoauMoM aHaiM3e NPEeanonaraeTcd, 4TO THAPOAWHAMMYECKHH M TENUIOBOH MOFpaHHYHbIE CIOM
paBHBI, YTO MPOQIIb CKOPOCTH B NpeleliaX MOrPAaHUYHOIO CI108 NMPEACTABAET COOOH CYNneprno3uuuio
YHUCTO BBIHY)KIEHHOW M YHCTO €CTECTBEHHOW KOHBexuMi. HaiimeH. xapakTepHblii napamerp ff =
35U, /T, onpenelsioninii OTHOCHTE/ILHOE BJIMSHHUE KaXIOTO M3 PEXHMOB YMCTOM KOHBEKLMM Ha
cMetnaHHyto. Jas YCK npeanoxena cienyoomas 3aBUCHMOCTD
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Hns TICK peiuenue noayyeHo pa3aeibHbIM aHaJIM30M ABYX 06:acTeid: ¢ npeoh.1aiaHHEM BbIHYKIEHHO#
M €CTeCTBEHHOM KOHBEKLHH.
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